Low-Rank Solution to an Optimization Problem Constrained by the Navier-Stokes Equations

نویسندگان

  • S. V. Dolgov
  • Martin Stoll
چکیده

The numerical solution of PDE-constrained optimization problems subject to the non-stationary Navier-Stokes equation is a challenging task. While space-time approaches often show favorable convergence properties they often suffer from storage problems. We here propose to approximate the solution to the optimization problem in a low-rank from, which is similar to the Model Order Reduction (MOR) approach. However, in contrast to classical MOR schemes we do not compress the full solution at the end of the algorithm but start our algorithm with low-rank data and maintain this form throughout the iteration. Theoretical results and numerical experiments indicate that this approach reduces the computational costs by two orders of magnitude. Imprint: Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg Publisher: Max Planck Institute for Dynamics of Complex Technical Systems Address: Max Planck Institute for Dynamics of Complex Technical Systems Sandtorstr. 1 39106 Magdeburg http://www.mpi-magdeburg.mpg.de/preprints/

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

State-Constrained Optimal Control of the Stationary Navier-Stokes Equations

In this paper, the optimal control problem of the stationary Navier-Stokes equations in the presence of state constraints is investigated. We prove the existence of an optimal solution and derive first order necessary optimality conditions. The regularity of the adjoint state and the state constraint multiplier is also studied. Finally, the Lipschitz stability of the optimal control, state and ...

متن کامل

Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier–Stokes Flow

The optimal boundary control of Navier–Stokes flow is formulated as a constrained optimization problem and a sequential quadratic programming (SQP) approach is studied for its solution. Since SQP methods treat states and controls as independent variables and do not insist on satisfying the constraints during the iterations, care must be taken to avoid a possible incompatibility of Dirichlet bou...

متن کامل

A Primal-dual Active Set Method for Bilaterally Control Constrained Optimal Control of the Navier-stokes Equations

This paper is devoted to the analysis and numerical solution of distributed optimal control of the Navier-Stokes equations in presence of bilateral pointwise control constraints. The analysis of the problem involves the proof of existence of an optimal solution, as well as the presentation of necessary and sufficient conditions for optimality. For the numerical solution of the problem we apply ...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017